
i •

Best
Available

Copy

.,

r

AD-An08 8^8

SOME ISSUES IN PROGRAMMING MULTI-MINI-PROCESSORS

CARNEGIE-MELLON UNIVERSITY

PREPARED FOR

DEFENSE ADVANCED RESEARCH PROJECTS AGENCY

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH

JANUARY 1975

DISTRIBUTED BY:

\m\
National Technical Information Sr vice
U. S. DEPARTMENT OF COKMERCE

■ ■ ■ ■ -- ■ ■ - ._

•n

SOME ISSUES IN PROGRAMMING MULTI-MINI-PROCESSORS

A. Newell and G. Robertson
January, 1975

Department of Computer Science
Carnegie-Mellon University
Pittsburgh, Pennsylvania

This work uas supported by the Advanced Research Projects
Agency of th? Office of the Secretary of Deferse (FA4G20-7B-C-8107)
and is monitored by Air ^orce Office of Scientiric Research. Authors'
address: Department of Computer Science, Carnegie-Mellon University,
Pittsburgh, Pa. 15213.

~—

SOME ISSUES IN PROGRAmiNG nULTf-MINI-PROCESSORS*

A. Neue I I and G. Robertson

INTRODUCTION

Large computer eyatems can be constructed by joining together
nic-'ny minicomputers — creatinp what can be called
multi-mini-processors. The first such systems are ji'st reaching
the point uhere p'"oblems of programming and use dominate problems of
design and cons true i ion. This paper attempts to share some of our
early perceptions about what these problems of programming and use
are. It also allows us to capture a historical record of our current

viewpc int.

Ue are not the architects of the multiprocessors we will
describe. Ue are not even the primary systems programmers, who create
the operating system and operating environment within which the user

operates. Ue are users of the system. But we are not arms-length
users, as are the users of a typical university computation center.
For to use such a system one must indeed create a special programming
system on it. Thus we are, shall we say, systems exploiters. Ue
are just coming deeply into contact with our multiprocessor. Ue
find ourselves facing many issues of how to exploit the system and to
program it — of how to make it yield to our will.

First we will sketch the multiprocessors that ue are
concerned with. There are only two of them, and we, the authors, are
actually working on only one. Uith this as background, we will

dipcuss seven programming issues.

The role of minicomputers as components of mul t inrocessor
systems is quite different Irom their cl'ssical role as laboratory
computers. Though some of these seven issues will seem quite
familiar to those whose world is the on-line laboratory use of
computers, some of them wi I seem quite foreign. Hopefully,
houever, they will paint an interesting picture of a use of
minicomputers that will become increasingly common.

»v This paper was given as an invited talk at the 1974 Conference on

the On-Line Use of Computers in Psychology.

I.

 -

nULTI PROCESSORS

There are only two genuine multi-mini-processors, as far as
ue know, though there may oe others in design. A multiprocessor is
characterized not only bt, the existence of many processors, but by
the sharing of primary memory, i.e., the processors address common
memory. This sets them apart from networks of computers, which have
nu ny computers, but where the intercommunication is essentially from
secondary memory to primary memory, i.e., each computer sees all the
other computers as peripheral devices. Multiprocessors permit a
degree of computational intimacy not available with networks.

c.nnP: THE cnu nULTI-fllNI-PROCESSOR

C.mmp is the multiprocessor at the Computer Science
Department of Carnegie-Mellon University [Uulf, 1972]. As shown in
Figure 1, C.mmp consists of IG PDP11 computers connected through a
crosspoint switch to IB primary-memory ports. Each primary memory io
2tlG words, for a total mennry of a million words. Each proressor
still looks like a PDP11 with a 16 bit word and an address space of
2tl5 words (actually, 2tlS bytes). In fact, a modest modification
must be made to a processor to operate within the system.

Each of the processors can lay its address space anywhere In
the million words of the primary memory. It does so through an
address relocation box (Dmap in the figure), which breaks the address
space of the processor into eight 4,098 word pages. Thus the system
has a small number of large pages, each of which may be independently
relocated through Dmap.

Each pc has its own Un'bus, the standard bus structure of the
PDP11. On this hangs 4K of local memory as we I I as all the
peripheral gear of disks, drums, printers, and connections to the
external world. The last includes a connection to the PDPIB, which
is the large general-purpose time-shared computer system in the
Computer Science Department. As the figure shows, there is also a
large (G0-bit 1-microsecond) clock (K.clock), which provides a common
reference frame, and an interrupt (K.interrupt) which connects all
processors. There is at the moment no switching between secondary
devices and the various processors. A disk, for example, is
permanently located with one Pc.

Not shown in tne 'igures is the ability to partition ihe
system, either dynamically or statically (manually), so that it
consists of independent subsystems. Thus it is possible, for
example, to have hardware maintenance going on at the same time that
a user system is operating with other Pc's and Mp's.

The system, though made up of minicomputers, constitutes a
large computer. Taking processors to be 11/40S yields about .^ to
.4 million instructions per second (mips) per processor, for a total
of C to 7 mips. This compares approximste iy with an IBM 3G0/158.
There must be some contention for memory as the number of processors

increase, but this is not expected to be large (the Dmap's for the

 - —

- ■ ■ ' ■■,

I- K.innterrupt
> Kia

Figure 1: C.mmp Architecture

- ■ ■■ -

ll/40s contain a cache).

The system has been jperational in parts for some time. The
16x18 switch has been running since flarch, 1974. Ue currently have
five 11/28 Pc's operational with 500K of memory. Ue do not have anu
modified 11/40s.

PLUR1BUS IMP: THE BBN MULTI-HIN!-PROCESSOR

The second multi-mini-processor system, the PLURIBUS IMP
[Heart. 1.973], has been developed by Bolt, Beranek and Newman to
serve as a high speed modular IflP (interface wpssage processor) for
the ARPA computer network. Figure 2 snows its structure. The
processors are Lockheed SUE minicomputers, which are IG-bit machines
with a 15-bit word address, and which are about the speed of the
11/20. They have a bus structure which Is similar to the DEC Unibue.
As shown in the figure, two processors are located on each bus, each
with 4K of local memory. Thus the figure Illustrates a 14-processor
system, the maximum size for which the PLURIBUS IMP was designed.
(The number was detemined by the appi icat ion, not by hardware
limits.) The primary memories come in 8K units with two units on each
memory bus. The switch is distibuted. unlike theC.mmp which is a
monolithic device. Thus, links run between the butel of the
processors and the buses of the memories; any pattern of access can
be obtained. As the figure shows, there are also I/O buses which are

inked in similar fashion.

An initial system has been running at BBN since mid-74. It
has operated with a range of configurations (up to the 14 shown). A
basic design objective was to create a modular series of IMPs, which
could be tailored to the processing load of the network node. Though
deliberately designed for a specific application, the hardware
structure is quite yener a I. It poses many of the same basic issues
we face on C.mmp, and the approaches taken on the PLURIBUS IflP offer
interesting contrast points with those taken on C.mmp.

r ^^

<n
UJ
V)
v>

CO

ac
o
w
w
UJ
o
o
o:
a.

OS

CO "

CO I-
-I_ *
a: x

3 I a. £
CVJ « 0
a> a
3 <

ISSUE 1: HOU TO EXPLOIT A HULTI-fliNI-PROCESSOR

Tha first issue is simply hou to exploit a multiprocessor,
since it is d larye systc... in terms of power, memory and bandwidth.
It has special structural chai acteristics, which are easy enough to
statt, but n:.t so easy to translate into performance consequences.

Onp might 3ay there is no issue -- simply use the machine.
But the question is rot laid to res' so easily. Different
strategies of exploitation require that effort be spent in different
ways, thus precluding following alternative paths with any
efficiency. Indeed. he issue as posed manes it sound I'ke the
multiprocessor arrived sui generis with the question of use fully
open. That is not the case. The exploitation strategy is chosen
before the design even begins and effects many of the structural
features of the syst ,1. The actual situation is more like making a
movie. Constructing ihe hardware system is .ike filming. Using it is
like producing the movie in the editing room. The final editur is
free to make any kind of movie he wants, but he must work with the
film given him by the director.

There are
muIt i-mini-processors.

three main strategijs
Ue take up each in turn.

for exploi t ing

PROGRAn IT FOR A SPECIAL TASK

The first btrategy is to view the mul * iprocessor as a
specialized device created to do a specialized tjsk. Hardware ^nd
software are to be combined optimally to perform that specialized
task.

This in essence is the stategy followed by the BBN group in
designing the PLURIBUS IMP. The task existed ahead of time in a well
defined form -- the ÄRPA Net is a functioning system with a
minicomputer (the Honeywell S16 and 318) üS IMP, and much
experience, both statistical and qual i t iat i ve, has beer, gained with
the requirements for an iMP. Uhat was needed was an efficient and
highly reliable implementation that could be scaled to the task. All
this information existed prior to design time, and the software anr'
hardware were designed together in apparent total harmony.

The effects of this can be illustrated by what is surely a
striking feature of the PLUPIBUS IMP -- it has no interrupt! There is
no way in which an artaitarily occuring external signal can cause the
system to attend to another task. Since the interrupt was
introduced in the late Fifties, it has been considered as manadatory
as I/O channels. Abandoning the int'-rrupt is an important design
dec i s ion.

The underlying rationale is verj single. The algorithm
to be programmed was well understood ano existed in code form before
the hardware design begjn. Drtai'ed analysis of the program revealed
that it could be partitioned into segments that never take longer
than 300 microseconds. Since the responsiveness of the system

fits the grain of 388 usec, all processe* can run
without interruption.

to completion

Co-equal uith the short program segments is the necessity of
getting new tasks assigned to a processor. If this takes any

appreciable fraction of 388 usec, then the overhead defeats the
scheme. The BöN group developed a device called a PID (Pseudo
Interrupt Device). This hardware device holds a set of numbers,
corresponding to tasks, which have been given it at arbitrary
moments. The device instantly delivers (and deletes) the highest
number, corresponding to the highest priority task.

Interrupts take appreciable time (e.g., for changing
processing contexts), which is avoided by the PLURIBUS IMP, along
with a fair amount of operating system code. In fact, the system
does not have an operating system in any general sense of the word.
The necessary functions are distributed carefully, such as bu .ne
PID.

This seems highly specialized. Indeed, that is the point. If
viewed as a device to achieve a narrou, well-defined total task, such
specialization is possible. Furthermore, though we know of no

estimates of the gains made to the PLURIBUS IHP by such
special i-.at ion, ue estimate that they are impressive.

«^s a final footnote, the motive of soec ial i zat ion does not
condemn the results to be equally specialized, though that must be

the fate of most specializations. But the PID and the associated
concept of presegmentin the code into run-to-completion steps may
not be of such I im. f»-.. general i ty -- though .t does pose an
interesting compiler problem.

STANDARD USER ENVIRCNHENT

The second strategy is to view the multiprocessor as
providing a standard user environment, much as any other computer
does. Thus, when completed with operating system and user facilities
such as file systems and language processors, the system will look no
di*ferent to the user than your local computation renter. Dnly down
in the boiler room, so to speak. Mill (h- multiprocessor design
become apparent.

Indeed the two specialized flavors of multiprocessors that do
eKJf,t in quantity are used in exactly this way. Dne is the use of
I/O processors; the oo.er is the use of dual central processors. In
both cases, they simpli, handle more efficiently the total set of
tasks that has to be done for a general user shop. An interesting
example of this is the CDC GB8B which has a large central processor
surrounded by ten miniprocessors. Uith few exceptions '.hat we know
of, it shows up simply looking like a very powerful general computing
system.

With this view the real questions are the economics cf
multiple smaller processors versus the single larger orocessor for

_

8.

obtaming ag.ven number of mips per dollar. That .5 of course
aluaye the question n computation, but here no special.zation comes
from specific applications.

MULTIPLE SPECIALIZED APPLICATION SYSTEMS

The final exploitation strategy 13 to vie« the multiprocessor
as a system m which a numoer of spenaUzed appi-cation systems Mill
be realized, both s .mul taneousiy and over time. Lach of the
application systems MMI be oaapted to the structure of a
mult.processer in order to tone as much advantage of 1t as possible.
Ihis is the view taKen w.th C.wmp. and our discussion reflects
essentially the cons-derates that have ansenwith respect to
L.mmo.

First of all. tn.s strategy leads to a general operating
system. since severat appiication« wi 11 De runn.ng 5.multanecusly.
tven if we env.sion sone "product ion »ode" where one application
might dominate the system for a per,0d of t.me. throughout most of
the life of an application äysteir one i| coding, debugging
modifying, developing and e-pior.ng. for thif one neither needs nor
uants the entire multiprocessor. The oper^t.nq system of C.mmp ia

caned HYDRA Wulf. IS74:, we .,11 Macrib« MM of.ts features
after introducing another .mportant cors-dera 1 on.

H small address spaces »those of the Pc's) are to move
around m targe memory spaces (tnat o* the mi I I ion-word Mp». then
there must be a memory Mpp»ng. D.map (see F.gure 1) accompl , sh«-3
th.s for C.mmp and BCP (see F.gure Z) ooes so *or the PubftlBUS IW
Tne important design question .9 »ne nature o* that mapping. An
attempt to build a genera user »yctw ec/s to making that mapping a
general d^mand-pagmg scneme. Thus a addresses go through a
dynam,c process of di «cover .ng whether the page is m memory and if
not ormg.ng il into MMTy. translating the processor address mtc
the physical address in tne memory. Thus has evolved the general
virtual mach me concept in mociern computing.

P DiQ1ic
C,?mn d0eb n0t hdVe ä ^"'^a-Pag'ng scheme (nor does the

^UHlBUS IMP) One reason ar.ses frpn.the strategic view under
discussion. Paging ichOMl ore e^pens^ve I in t.me). more so than
sunple relocation schemes. Thus, to not a paging scheme in the
hardware if to agree to mane every üSer pay tr s cost. At this pomt

one has eliminated some of tne important possibilities fo-
adaptation. For not only the cost gees up. bet everyone will üe
subject to the same pag.ng system with itl particular cost profile,
whether it fits the neeos of their particular system or not.

Thus what we find m C.mmp 11 aso-cailed "'arge page"
scheme. in which there are only eight pa-jes. earh large enough to
hold a substantial subsystem UK words'. Tne use of th.s page system
is then left to the user. There is a -.ost. tor insofar as paging is
necessary, it must he detected and tKOCutod by software. But in
return, we obtain the possibility of fitting the paging system to the
application system. That ia. insofar as pages can be left in place we

Figure 3: HYDRA System Orgonizotion

1
SM^na__ ,^««_______

pay minimal addressing overhead.
10.

HVDRA; The C.niirp flppr^t i»,-. Sustpm I.«

strategy. One can Z ILn ■ * strongly reflect this
sho.n |X Figure 3 W^ . ?Ve^a,l SyStem ^Qanization.
bottom part of the'Hgure Th s 1^ 1° the System' sho- '" the
cannot I delegated T^teTs" ^ "X^TlT* ^
security of the resources in the astern ThL c ^'r'0" and

Kerne, "S, , ipr%« ^g' ys . A" "a^H J" L" ind,Cal0d b«
»anage the s-t of pages in cor. iSs" and. b« th0, Presses that

an« an inte,-pnoc,s: S^l^'^t« A*"" '^ 9ü9,e" "/0)'

«I,.- ;ohnc^te::,lou8.odi::!^,hi6h-i"e; ra,in9 ,^™-
associated Hlthlt « nni .,. «^ , .• Pol icy-system has

policu-austem n .h ! US,e"' he malJ reclue" a Particular

epeci?ir*:, o" \XA ^r^r^jrb8 '•"^ - -

several places tNe"eM 19731 n ^l".! ^ >'e'"9 """«'■"a««« at

« are pursuing it^pe^'tlg e?-'^^:'In^i tip.^™ r

HEARSAY^ Lesser ^TT3 StrurUre 0f this s^™' "I led

There., a central ling process that Matches the ac'vitg of ";

SYNTACTIC
PROCESSES

SEMANTIC
PROCESSES

11,

ENVIRONMENTAL
PROCESSES

PARAMETRIC
PROCESSES

FEATURE
EXTRACTION
PROCESSES

INDUCTION MODEL

Data Directed
Information Gathering
Hypothesize and Test
Parallel and Independent
Dsactivation Simple

Figure 4: HEARSAY-2 Conceptual Structure

various knowledge sources and uses the collectively lighted guesses
to eventually understand an utterance. J y »

The HEARSAY structure lends itself to a direct decomposition
nto parallel processes to take edvantage of a multiprocessor

architecture. Each knowledge source can be a seperate process and in
many cases mul t iple copies of a given knowledge source can be used.
Having aeveraI sources of knowledge simuItaneousIy working yields
sigmf.cant improvements in the time it takes to recognize an
utterance. This is particularly important since the ultimate goal of
such systems is to recognize speech in real time. The HEARSAY
structure thus allows for effective use of a closely coupled
multiprocessor where a large common data base can be easily accessed
by a large collection of processe&.

Ina large system like HEARSAY, it maybe necessary for
special scheduling algorithms or paging strategies to be employed.
For example t^e initial operating system built on top of HYDRA does
not provide for priority classes in scheduling. The large collection
of processes the make up the HEARSAY system may very well need to be

is,0th^ Svnp^V0 0bM ^ the deSired effeCts- The Wtant point
^♦h !K t ?0eS all0W f0r an0ther 0Pe^ting system to co-exist

MFI^AV ? '^ ^ that m08t U6er3 wil1 use- Thu8. "e expect
HYDRA P ^ U9e it9 0Wn operatin9 9y3tem buil* on top of

12.

no

CONCLUSION - STRATEGIES

It is important to realize that of these choices,
part.cu ar one is "right". Each i s an attempt to maximize the
payoff for specific, but different, goals. The first choice, that

taken by the PLURIBUS IflP. attempts to maximize the ef f icien^y and
reliability for a specific task. Uith the second choice, that of
building a general computing environment, one is trying tc find the
most efficient way to construct a certain environment. If
multiprocessors can compete for that environment. they can be an

implementation of choice and mul t iprccessers shou!d be designed to
meet that demand. The third choice, that taken by C.mmp. attempts to
gam the advantages of specialization but over an unknown range of
application systems. It must necessarily trade off some

possibilities of specialization against a system that can handle
several such applications simultaneously. Similarly. it must trade
off the best scheme for general computing in order to permit
adaptations to occur.

Nor are the choices mutually exclusive in the sense that if
you choose X you are precluded from the same appl-cat ions that choice
Y permits. Speech systems will be brought up on general purpose
systems. (We are creating a version of HEARSAY-2 on our PDP18.) Ue
will be creating a general user environment on C.mmp. which will run
simultaneously with our work in speech. And we would certainlu not be
surprised to see the PLURIBUS IHP used for other applications quite
remote from the message processing task.

a givenXstei" V^^ doe8 bias ^ application potential of '^

ISSUE 2. HOU TO GET ALL THE SOFTWARE

The second major issue is how to obtain all the software that
is needed for such a system. By now we are all aware that it takes
an immense amount of software to maks a computer system livable. In
practice such software only arises with the develcpment of a large
and active user community, plus the continued efforts of the
manufacturer over several years. No general preaching on this fact
should be necessary in a minicomputer user community where new
systems arrive from the manufacturer rather bare, despite advertizina
claims.

14.

The multi-mini-processors are composed from «Kitting minis
(C.mmp from an extensively used sustem. the PDPll; PLURIBUS IMP from
a new machine, the Lockheed SUE) and programs exist for these minis
as stand-alone systems (many for the PDPll. fewer for the SUE). Yet
these do not go very far toward satisfying the need. First, all such
syatems must be reconditioned to work in a multiprocessor
environment. To do this in a way that exploits the multiprocessing
is a genuine system-programming problem. But further, these
multiprocessors are big systems with big memories and they can use
software systems commensurate with that power. All this adds up to a
major problem.

There are several approaches tn obtaining the software. Even
more than with the strategy of exploitation. these are nc i mutually
exclusive. In fact they form an „matorium and all should be used
(and pretty much are on C.mmp).

CODE IT IN ASSEHBLY LANGUAGE

The first approach is to use the minimal tools provided by
the manufacturer. BBN has implemented the PLURIBUS IMP in this way.
A simple assembler was used for all programming. A straight-forward
loader was used to transfer code to the machine. And finally, a
relatively simple debugging system was used. The debugging system

had no multiple-process capabilities. 1 f the amount of software
that must be produced is small, this
approach.

is certainly the quickest

CODE IT IN A HIGH LEVEL LANGUAGE

The main approach used by the implementers of HYDRA for C.mmp
was fhe use of a high level language -- BLISS (Uulf. 1971]. BLISS is
an ALGOL-! ike system implementation lanciuage which is available for
both the POP!2 and the PDPll. It haa an optimizing compiler that
produces object code which in some cases is better (more efficient)
than code produced by a system programmer using assembly language.
For larger software systems, it is desirable to use a high level
language. Such a language usually a II owe for much greater programmer
productivity and for systems that are much easier to assimilate and
maintain. In conjunction with the high level language, one generally
finds more elaborate relocating loaders and deougging packages. The

BUSS debugging package, called SIX17 .n 15

of multiple processes and f^' al l0WS for syn,bo1 'c debugging
debugging. ' and for sour« language routine level

on-g is ^•oiMII^Ä runnlnr^T"58 0f thiS ^^ ^
Mhich shOW the productfvty 0^^^^ Z^' T meas—ts
good. both in terms of number oL i software team to be very

--month and in terms of ^L^rB^SS^Ie^ts8.^" ^^ -'

COUPLE TO LARGE COnPLETE MACHINE

th. "fwed::rop:::recansri"rto t\^"-*^.-hot
^cilities of the large computer cro"!US,T/he COn^^ user
e aborate linking lo.^. TyM^.S^Br ^ •'"r' Cro99-co'"P;'-s.
all be .mpiemented and u.ed mo e eas u ^n 2 .'^ ^'^ PaCkage9 can

»«nl. The HYORA developmenT ^H! y / arye comPuter than on a
"ith a P0P18 that ts connected ?o c'l "'rf' theSe caPa^"tie5

greatly 8 impi i f ies the prob em of ?* ThUS a ' ^9« computer
specially true in the eaMu n^' V *oUuare development. This is

under deve^opment^o^hT^abt6? the *"*"" ^ i9 8ti(l

some ofBthet:o^::ayr:0caTibldeSrala
or

COUP,eHd ^ ^^ is that
existing systems on the large c.puJer To'r ^^^ ^ "•«"«
advantage of the file system on IK- i 'Stance, o.ne can take

the multi-mini. I f the .u U i ^ n T COmPUter in ' ieu of one °n
could be transferred betueen thP ? a 90 **' * file SV*{™' '^s

•arge computer become^ re d re^t ^cct^M Tl*"" ^ in the

another example. there are nn y fccessible to the multi-mini. As
compiler on C.:mPuLa^a

n
B

0
LI'

mmed,at^,ans to crea^ a BLISS

be stable and efHelen Ultima eL'^ 0n the PDP10 a^ears to
compilers to a mul t i process mo PH!'' ^ "i^ t0 e><P,0re how to adapt

GOOD-KERNEL HYPOTHESIS

the k.r^1^^^»"^ ^yPothes.s that if on. build.

operating system fac^M ^^ f^ COr:eCt'^ ^ "**r level

easier to implement. To L'e extent SyDRA'^.r09^"19 beCOme much

hypothesis. If the HYRRA . ■ '5 the f,rst test tor thli
tacilities. buMding opera t inn r? ^ theright Set of ^ i
simple compare TbuMd na ?he

üfflS 0nto*0<<< should be very
machine. « OUMdmfl the same operat mg systems on the bare

The impiemertation of a fila mumtmm
phenomonon. HVORA't Global q.-*«i T , y 'S an e><ampleof this
directory structure a ow one t II-'? COn>'J"C«°" ""* * simple
«-Pie objects. In order 0 b7nd a ^ '^-^ P-manant storage o,

-■■•Ply needs to define a ne. ob'ect clnlä 'rT'' ^ thiS* 0ne

the representation of the file TK-'H ! * ' Uh,ch contains
tile. The ri.rected graph structure of the

Figure 5: L^Facilites

... . ^ .

^llr^^^T^s;^, h;r;rc:;ca,
t
fi,e 8— 17'

«achine is a verg tine consuming project 9truct-« <- the bare

INTERACTIVE SYMBOLIC IMPLEriENTATION SYSTEM

provides^ta.Z'tl'fn t0 ^ "W""**"™ syste. that
app. Nation*0: steTnt^^r^r10 ^ ^ ^ bUild ^
such a sy3ten,. called U [Ne^e I' 197?] T been ^^'^ting „Ith
5 illustrates the Kinds of f ac 1 i i e ' t °t SeVSra,.rr8- FigUre
user. The system has a kPrL\ i J tnat are ava. lable to an U

initial languages which are^HT yP ,t al80 P1"^"'des three
facilities (e.g edi rrs d.h construct a large set of user

matures of l^^] S*^^*'' a99emb,erK ^ "^
1) on n^3 t0tal environ,nent so that one need not relu

on other systems to produce the required software
2) Lit is complete I u accessihlo t« ^ »wriware.

and aria«* ♦ u- acce98,ble to the user to modify and adapt to his own needs. W

^^«^«^.r^rin " : a Si'5,e■ like -'e-c.ive LISP,
programing faatur's. ' '""^"''"g ex.ramely basic ^.tm

137« iw^r W«T T^r;u::: L"(
on c.».Pduri„gApri,,

betueen one and tbr.sl ,a. " .u ^ ° Pr(!9rä«»ers (varuing

pre-pnooesson .ba.'^lo TL9 o",' ^'T.:; ^^ ' «f^
analyzer, sample the data ,= ! . real-time audio spectrum

segments: the ' esuU to be Zl* ' ,nt0 Ph?nemeS• and '^ the

display processor (see F inure GTH^ rea|-timeon • Q^phics
graphically i I lus rate ho L i* The demonstration was intended to

to the mu.tip^ceslor^ylte.8^"^ ^ ^ Pr0Ce980r9 ™ ^d

run the U TyZ^llTü^Lr ^ "* initia,,y Wanted <°
not yet ready for end user« Ü. T- Unable t0 beCause HYDRA "•■
for C.mmp and w^thm that !' ♦ C°ns ructed a stand-alone U system

designed" an Inü? ^XS^Tu iU ^sT^ r?05^^ Ue

segmenter. and labeler could be Ittten i! B.ISS U^ 'T ^^^
specialized multiorocessinn e e

gr tten ,n BL'SS. Ue also built a

characteristic tha?tu^9 . ?y em Uh,Ch had the ^usual
end result o the e^ilnt^. i I "-i t iprogramming system. The

———————

Q Labeler

TTY /
/ *

^Control J ^Segmenter)

TSampI er

T

18.

GDP

Mlc ►ASA

Figure 6: April-74 Software Experiment

_________ ._^-^_~_—____. ____________

19.
CONCLUSION - SOFTUARE PRODUCTION

AM the various approache9 to producing requisite software on
a mult.-mm.-processor are important. For each approach there is a
set of software tasks where it is better than any of the other
approaches. t . thus important that the multi-mini environment be
rich enough to allow the use of any or all of these approaches.

ISSUE 3: SMALL-ADDRESS PRDBLEfl 20'

M^y [^.^j.^r irrtN tan :re rantage of the •—
«ini. On C.mmp. f,- instance PJH P ySICa, addre93 SPace of •
only 32K uorda While the pS. IT 0rocesso'- 'f d"-ectly address

«•ill ion Mords. Anuone ühn J ! ^ Capac,ty 0' ,h<' Wt. is one

is forced to .aRe eHous des" d ° ^^ Pr0gra'9 ^ than ™
•ffort. Furth5rmore/s nee t':90!. ^ ab0Ut h,5 P^mming
applications „t,, be a racted 0 h"9! .T^ i9 a' ■ab'e- '^je
occur frequently. A ar^e nulL . "n"ni and the Prob,em -''
-d attested. %or: a', T^M^^'T ha- ^n suggested
solutions that uorK .ell. H^e" eT' ^^'T* ^ ^
programming system, all the solut innc .! •. a ,a^ge• dtfn*«'C
either restrictive or costly in o^head "^ " ^ ^ t0 be

STATIC OVERLAYS

overlay pTa^r9uBinTr^o9LU;S0,Uti0n t0th,S P^'-has ^n to

t^ -a?est\Vsrn9oe:c ;hon
u;:

9;h
9::r9 ,Dm:p on^mpKHVDRA•%

always be in the same olarp tn ^ soiut.on. The overlays must

overlays conta(n\^da
P "a ^^f^55 ^r**"™' M the

translation problem. Houe er „" t? ^^^ ^ ,S n0 artdress
data which conta,ns many^ „ r ^ ZZ^ ^^ haVe

However, there are case«! i« I * —• •
systems uhere code in an over lau attel^ /" SOn,e lar9e P^amming
another overlay uhich mustreslty' ^T data ^ "^ -
Static overlays prevent thilT ^e physical addresses.
Problem uith this option si Z"^ COrre^- ^ other
relocation registers LarcP, T 0Verhead ,ncurred in changing
relocation r^?,^* rJ^JT^J^ are '^'U to uant to change

frequently, thus mak.ng the overhead critical.

POSITION INDEPENDENT OVERLAYS

overlays^h^onulnl00^1"1^ t0 the ^-^-one is to use
you from KI r^rfcH^ « !? '^pendent code and data. Thl. fr^

PHysical IC^. ^ t.0lr:n,
Dr^

nfl
i^ 0Ver,ay 'nt0 the sa-

Position independent code' ^ t e d'to" Jh:S S0,Ut,0n iS that

-»ore slouly. and be harder to produce Th^ J? t ' SPaCe' eKeCUte

underlying processor In the Su m[n\ .Mn ^ aS5Ume5 that the

Position independent code ieT^s'Z pHw.'" "*•""** '«« cost

SOFTUIARE DEMAND-PAGING

demand-paging. TMs invli wO!
0lUt l0n- iS t0 Provi-e software

9 mil mvolves accessmg data with "fat addresses".

e.g., 32 bits of effective address that determine a page and an
offset uithin that page. It also involves making any code that
crosses page boundaries go through both demand-paging and address
translation. Ue tried this solution in an early version of L*. This
solution takes more space and has some position independent code
which is harder to produce. It also suffers from severe overheads for
the demand-paging and address translation. Its great virtue is that
it provides a truely general system; one where the entire large
memory is directly addressable.

MIXED SOLUTIONS

The most promising approach appears to involve mixing several
of the previous solutions. There are two basic ways to do this. One
method would start with a software demand-paging system (fat
addresses) and allow for some pages to be specialized (i.e., have
small addresses for efficiency). The other method would start with a

static overlay structure and build up mechanisms to allow for
arbitrary virtual addresses (pseudo-fat addresses). Ue are currently
working with the latter of these methods. Ue have constructed the
latest LVf system with a simple static ovsrlay stn -ture. Ue are now

in the process of designing the mechanises necetsary for certain
facilities (e.g., compiler) to be able to access arbitrary virtual
addresses. The main problem now is to determine whether a large
application system like HEARSAY-2 can be decomposed into small
overlays that don't need direct access to each other except on rare
occasions. It remains to be seen whether this solution is adequate
for large systems.

21,

22,
ISSUE 4: PROTECTION

The forth major issue is protection. The style and amount of
protection in a multi mini operating system depends greatly on uhich
strategy is chosen for exploiting the multi-mini.

NO PROTECTjON

The PLURId'JS IMP represents one end of the spectrum. The
decision to bui Id a specialized systerr for a specialized mult -mini
led BBN to provide no protection at all. The assumption here ii
that there is only one application system running and it was built by
a small, closely-knit programming group. Every module in the system
must be aware of other modules and their conventions so that they
don't get in each others way. There is aiso ar, assumption that the
system is small enough to be easily debugged. A module witn a bug
toi Id accidental ly destroy another module. If there are too many
nodules (or they are too complex), it may be very difficult to find
the incorrect module. This solution generally works well only for
small and well understood applications.

AUTHORITY-BASED PROTECTION

At the other end of tne spectrum, the decision to allow many
(unknown) applicationa to run, with program development occurring
simultaneously, lea-Js to great roncerr, with protection, both oet^een
users and between various processes being run by one user.
Protection can be viewed as a central issue of operating systems,
i.e., the control of resources, the distribution of the right:-, to use
these resources to various processes on a moment-to-moment basis, and
the guaranteeing of these rights. Host of the first and second
generation operating systems, such as the existing DEC systems

(TORSTEN and TENEX) and the IBM 0S3Ge. are so-called authority-based
systems. In these systems, protection is associated with the data
and not with the processes accessing the data. This tends toward
crude categorization of protection (e.g., the familiar
read/write/read-write distinction). There are currently no
multi-mini systems that use authority-based protection, although it
is clearly the alternative that would have been used a few years ago.

CAPABILITY-BASED PROTECTION

HYDRA is a capability-based system, which means that it
associates rights to use resources with individual processes and not
with individual data. Capability bystems permit much finer
distribution of rights. essent i a lly on ar b i trary processes. Uie are
only just beginning to see capability-based operat.ng r-jstems. and
this aspect of HYDRA represents an independent research effort.

HYDRA has an abstract view of the entities that can be
protected and the rights to manipulate these entities. Because of
th's» '* 'S possible to build higher leve. p-otection into

specialized subsystems. This is another aspect of the HYDRA design

that reflects the basic exploitation strategy of multiple specialized
application systems.

There is a subtle disadvantage tilth capability-based systems
that we are learning the hard uay. You general ly must do much
plannmg m a session to insure that you Mill have al I of the
rapab.l.t.es you need. If your program has a strange bug and you
den t have the proper -ights or capabilities, you may not be »bit to
explore the bug. At this point, ue lack the experience with HYDRA to
kne jhetner the advantages of such a protection sustem outweigh the
di sadvantagys or not.

23,

Generally, there is a computing cost associated with
protection and the more protection, the higher the cost. This leads
the user of an over-protected systerr to find ways of avoiding the
protection mechanisms. However, with an under-protected system, the
user tends to lose much wor«^ when something that belongs to him is
destroyed by someone else. He also tends to lose time trying to
d-bug complex systems when the various parts of the systems are not
protected from each other. Finding the correct balance of protection
is both .mportant and difficult, and we expect this issue to become
more visible at Z.mmp gets more and more ust.

24.

ISSUE 5: Tlflt-CONSTANT PROBLEM

Thp fifth major issue has to do with the time constants for
basic fun-fions that must be performed on any mul t i-mini-processor.
This is actually a class of problems, one for edch app.ication system
against the pattern of bab c time constants. For this reason we
cannot enumerate general alternatives, but must select illustrative
issues that arise for particular examples. The important point is
that the time constants have an immense influence on programming
style and system design.

Consider two basic ways of bui Iding a large programming
system: 1) have one process that has many overlays and does a great
deal of relocation register changing; or 2) have many small processes
that communicate with inter-process communication and don't ever
change relocation registers. In HYDRA, relocation register changes
are about an order of magnitude faster than inter-process
communication, so the correct choice is the first way. Functionally,
many intercommunicating procenses way be the preferred way to
organize the system, but the time constants preclude it. The time
constants may have more impact on design decisions than the
functional characteristics of the operating system.

Another example of this problem has to do with prevention of
deadlocks, a pervasive problem in all ivul t iprocessor systems. The
HEARSAY system wishes to have a large data base shared between many
processes. In order to prevent a process from having the data it is
working with changed by another process, semaphores are used to build
lucking structures drouno relatively small pieces of code.
(Semaphores are a standö-d device to avoid interference between
processes; they are flags that indicate whether an object, e.g., a
piece of code or a piece of data, is in use by another process.) The
problem is that the operations on semaphores that HYD M provides are
much too slow relative to the frequency of use and size of code they
are locking. Because of the time constant, we had to build another
level of semaphore that would only make use of the HYDRA semaphore on
rare occasions. This is an example of a functional capability that
could not be used because of the time constant problem.

Another place where the time constants become critical is in
real-t;me application;. The basic functions like context swap,
relocetion register change, inter-process comnunication, and
interrupt handlinj take r.iuch more real time on a mini than on a large
computer. The difference can be attributed +0 »he differences in the
raw processing power and in the complexity of instruction sets. When
these differences are taken into account, the relative overhead on a
mini and a large computer are about the same. However, the real-time
overhee-' becomes critical when doing real-time computation, or when
minimizing terminal response time.

The time-constant problem thur conies down to understanding
the time cont ^nts and their relationships with respect to a given
application system. This understanding is necessary if the
application system is to make effective use of the multi-mini. The
problem exists in all computer systems, of course. But it is much

25,

more critical in systems with highly flexiole and general operating
systems (such as HYDRA). Such operating systems provide functional
capaoil.ties of great power and elegance, but the time constants
often deny their use. The situation is especially critical in
multiprocessors where exploi tat ion of the system requires working
with many processors in some coordinated scheme. This can only be
done by working through the operating system. It is almost impossible
in a multiprocessor to avoid the time-constant problem by withdrawing
to your own world to avoid interaction with the operating system.

1

J

26.

ISSUE 6: RELIABILITY

The sixth major issue is total system reliability.
Nul t i-mini-processors are cor-plex, and much can go wrong in both
hardware and software. Also, the hardware that provides for
multiprocessing provides redundency, which if enoloited can permit
more flexibility in recovering from haruware failures. Because of
these factors, reliability plays an important role in all
multi-minis. There a; e several known approaches to the
rel iabi I i ty proble:n.

CRASH AND DUMP

The most common approach in existing large computer operating
systems is to bring the system to a grinding halt when a failure is
detected. The system is usually dumped at this point so that system
maintainers can try to determine what caused the failure. Then a
fresh copy of the system la brought up. The obvious flaw with this
strategy is that all users lose their current run, even if the
failure would not have otherwise affected them. This approach is
slowly disappearing as more experience is gained with smooth recovery
from failures.

AHPUTATION AND EXTERNAL BACKUP

The PLURIBUS IMP stresses reliability as its most important
attribute. Their system is highly modular and redundant. Every
structure in hardware and software is isolated and duplicated. The
system makes periodic validity checks and amputates any structure
that appears suspicious. If the amputation causes some data to be
lost, an external backup provides the data to be dealt with again.
The interaction between an IMP and the ARPA Net involves much
handshaking. When data is accepted by an IflP, it acknowledges the
reception. If no ackr ^i »dgement is received within a certain time
frame, the data is sent ar'-n. In this way, data is distributed
across all IMPs in the network. Thus, the specialized nature of the
application, in this case the ARPA Net, provides an external backup
for lost data, no matter what the cause for the loss. This permits
good solutions to the local reliability problem.

The reliability of the PLURIBUS IHP is so high that the
first time the system uias ever brought up they discovered that the
only way to stop it was to pull the plug on the whole system. Since
then, their system has grown to be one of the most reliable known to
us.

RECOVERY BY RECONSTRUCTION

The nature of reliability on C.mmp and HYDRA is quite
on different but still very important. The stress in HYDRA is

recovery after a failure has been detected. C.mmp does not have the
kind of backup that PLURIBUS IMP has with the ARPA Net. The method in

-

HYDRA is to ma.nta.n a global symbol table (GST) which contains
mformat.on about „ery structure in the system. The GST ?8
ma.ntamed so that any destroyed structured can be recreated
mcludmg parts of the GST. To detect fai lures. .he hardware h«
been n10d)f d ^ do parity checking and ^ ^^ ^nta^ns
checksums of all cr.t.cal structures. In addition, whenever an error
n detected wh.le running a user system, the error information is
pcssed back tr that system. Thus, the end user can build reMab e
aophcat.on system.. HYDRA's reliability is still under research and
• ts success has not been fully determined.

PARTITIONED SYSTEMS

n.rf .- An?1!
her aSPeCt of^e,ability inC.mmp is the ability to

part .t.on the system into several smaller systems. This allows
concurrent system development. general user facility use. and
hardware maintance and development. The PLURIBUS IMP can also be

rnn ^1?^: ^V 0nly by recabling- The C. mmp par t i t i on i ng i*
control ed by sw.tches and is changed on very short notice (a couple
of mmutes). Th, s ability is being used on a day-to-day basis to aid
!• selecting a stable configuration of C.mmp. Ue also use it
rrequently to allow several groups to work independently.

27.

28,

ISSUE 7: PERFORMANCE EVALUATION

The last major issue is how to analyze and evaluate the
performance of running systems on a mu! t i-mini-processor. This issue
is perhaps the least understood of all of the issues. Programmers are
notoriously wrong in guessing what their programs are actually doing
and where the time is really going, There is reason to believe that
on a multi-mini, the problem is going to be Mich, much worse. The
decomposition of algorithms to take advantage of parallel processing
is currently a rich research field. Imagine how difficult it will be
to determine the dynamic characteristics of several cooperating
para I lei processes.

Iradi t ional ly, the analysis of performance of a computer
system or a program is undertaken as a study. Often this study is
primarily of academic irterest, though sometimes with a view to
balancing the computer system or making the algorithms run more
efficiently. However, we believe that for multiprocesscrs there will
be a major shift in emphasis of performance evaluation from analysis
tools to operational tools. They wi I I become as important to a
multiprocessor user as the traditional debugging tools.

The solution to the problem on C.mmp has been to start a
research project on a hardware device, called a hardware monitor
[Fuller, 1973], which will allow us to measure spncified kinds of
activity on one processor's bus. This device, used in close
conjunction with software in HYDRA, should give the user a chance of
obtaining the dynamic job statistics he needs to analyze the
performance of his programs. Ue also hope to use the device to help
understand the real performance characteristics of HYDRA in order to
improve system performance.

An example within HYDRA illustrates the uce of the hardware
monitor. Ue have a real-time device that connects C.mmp to the PDP10.
Ue recently discovered that characters we-e occasionally being lost,
presumably because HYDRA was running blind to interrupts for too
long. Ue were able to verify this with an oscilloscope. However,
we have not been able to find the code in HYDRA responsible for the
excess blind time. Ue expect ^he hardware monitor to be able to
isolate the offendinci code. The important point is that a multi-mini
is so complex that net: techniques must be developed to aid in
performance evaluation.

-aB___^aaHaaai

29.

CONCLUSION

Though other programming issues could be discussed,
all anyone should be called upon to remember. Let us sum up.

.even

Ue believe that multi-mini-processors such as C.mmp and
PLURi3US IMP 'jill come to provide a substantial amount of
computational power. Although the technical capability for
creating multiprocessors has existed for quite awhile, only with the
development of the minicomputer (and now the microprocessor) has thp
cost-benefit structure pointed to multiprocessors as an important
technical solution. As a result we know almost nothing at this,
point about the actual programming and use of genuine
multiprocessors, i.e., those where the multiprocessor st-ucture is
sufficiently general and available to affect the structure of
application systems.

Several of the issues we have discussed in our list, e.g..
how to get all the software, protection, reliability, and performance
analysis, are well recognized problems and are subject to intensive
independent research. The work with multiprocessors gives them a new
twist, however, raising to consciousness aspects that are of little
interest in other kinds of systems. Though still speculation on our
part, performance analysis as a real-time dynamic debugging tool
represents a new world.

Two items on our list, the smal I-aadress pr'.olem and the
time-constant problem, do not represent areas that are well explored
in computer science. Ue have seen no solutions to the underlying
programming issues in the literature. Both items seem critical and
worthy of considerable attention.

The small-address problem seems inherent in mulitprocessors
built with mini- or micro-computers. Possibly the problem will be
solved by avoiding it. Some new minis are appearing on the market now
with large physical address spaces but maintaining the other
attributes of a mini. However, a large s^ ess requires many bits,
both in memory to retain it and in bandwi. ,1 to communicate it.

Ue might point out to psychologists that the problem is in
essence faced by a population of inte. communicating humans. No one
has internal symbols (i.e., addresses) designating all the things
that all individuals designate internally. That is. they do without
large addresses in the hardware. Instead they use language, which
is a set of software-maintained large addresses. for their
intercommunication. Ttey continue to think their private thoughts in
separate representational worlds. Thus the problem of communicating
with small addresses is a fundamental one not restricted to the world
of multi-mini-processors.

The time-constant problem seems critical if we are to make
effective use of multiprocessor architectures. Ue must
understand what various patterns of relative and absolute time
constants imply for the processing systems built on top of them. Only
then can we design multiprocessors with a balance between their

„^___

uith'uh?^ "Pabilitie9 and the -Wnile capabilities (i.e.. the spe.d
with uh,ch they carry out various functions). What can be done uithin

ov r^:^'^ ^L31-^.^ desi9ned is .till puite uncled sL
OthPr! I ' 9uappin9 U**' are built into the harduar*.

betL; n"?bM T0^10"' ^ ^ SUbJeCt t0 in*"l~« trade-o"; between flex.b.hty ano computmg cost (for checking protection) For

h t'a^tnir ^rVV0^"1"9 0Ut re9tricted P-tection s he^e so that a mm.mum of check.ng has to be done dynamically.

UP h-w- ^ ^ attempted t0 e><Pose a set of programming issues that
ue have encountered In beginning to use a multi-mini-processor. He

sau no h0" U?<amentäl '^^ ^ the correct formulations - to
say nothmg of the correct solutions - for most of these problems In

Lr?rt e^v:,:onment•Perhap9 the9e wi,| ** longer ij *£ %£
mportant problems after .e obtain more experience That experience
•s now envelop.ng us day after day. per.ence

30

—

REFERENCES

Fuller, 1973]

S.H. Fuller, R.J. Swan, and U.A. Uu'f

The Instrumentation oU..m.p: A Hul t i-Hini-Processor

irtlTB ^ ^"y^73, Ne" Yorkl N-Y" "•"h 1973,

tHeart, 1973] >'

F.E. Heart, ^Tn. Ornstein, U.R. Oouther, and U.B. Barker
A New nmicomputer/nultiprocessor for the ARPA Network
Proceedings of the National Computer Conference, 1973
pp. 529-537

[Lesser, 1974]

V.R. Lesser, R.Q. Fennel I, L.D. Erman. and D.R. Reddy
Organization of the HEARSAY II Speech Understanding System
Proceedings of the IEEE Symposium on Speech Recognition
Apr i I 1374, pp. 11-21

[Newell, 1971]

A. Newell, P. Freeman. D. HcCracken. and G. Robertson
Ihe Kernel Approach to Bunding Software Systems
1970-71 Computer Science Research Review
Cargegie-flel ion Univ.

[Newell, 1973]

A. Newell. J. Barnett. J. Forgie. C. Green, D. Klatt,
J.C.R. L.cklider, J. Hunson, R. Reddy. and U. Uoods
Speech Understanding Systems: Final Report of a Study Group
Pub. by North-Holland, 1973

[Robertson, 1974]

G. Robertson, A. Newell, and D. McCracken
On Doing Software Experiments
1973-74 Computer Science Research Rp.view
Carnegie-Mel Ion Univ.

[Wulf, 1971]

W.A. Uulf, A.N. Habermann, and 0. Russell
BLISS: A Language for Sys+ems Programming
Communications of the ACH, December 1971
See also: "BLISS-11 Programmer's Manual", DEC, December 1972

[Uulf, 1972]

U.A. Uulf, and CG. Bel I
C.mmp -- A Multi-Mini-Processor
Proceedings AFIPS 1972, FJCC. Vol. 41. AFIPS Press
pp. 7G5-777

[Uulf, 1974]

U. Uulf. E. Cohen. U. Corwin. A. Jones. R. Levin,
C. Pierson, and K nollack

HYDRA: The Kernel of a Multiprocessor Operating System
Communications of the ACM. June 1974. pp. 337-345

31,

